
International Journal of Management, IT & Engineering
 Vol. 15 Issue 05, May 2025,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

28 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Domain Autonomy in Microservices Architecture: Real-time

Data Sharing

Shashi Nath Kumar

 Abstract

 This paper addresses the complex challenge of managing source of truth and

reference data in a Microservices Architecture, drawing upon Domain-Driven

Design, Event-Driven Architecture, Command and Query Responsibility

Segregation, and Data Mesh principles. I analyze the limitations of traditional

database replication and the complexities introduced by distributed systems

and propose a hybrid approach, combining log-based Change Data Capture

with other modern Design Patterns, to achieve a balance between domain

autonomy and efficient data sharing. The proposed approach minimizes

database load, promotes loose coupling, and enables independent evolution of

services while embracing domain ownership of data.The proposed

implementation evaluates the performance, scalability, and trade-offs of this

hybrid methodology. The implications of these findings are discussed for

architects and developers building distributed bespoke business systems,

offering insights into achieving domain autonomy, data consistency, and

efficient data access in the evolving landscape of microservices architecture.

Keywords:

Domain-Driven Design;
Command and Query

Responsibility Segregation;

Event-Driven Architecture;

Microservices Architecture;

Data Mesh Architecture;

Change Data Capture;

Inter Service Communication

Copyright © 2025 International Journals of Multidisciplinary Research

Academy. All rights reserved.

Author correspondence:

Shashi Nath Kumar

Bachelor of Engineering (2007), Jadavpur University, Kolkata

Independent Researcher, Tampa, Florida, USA.

Email: email2snku@gmail.com

1. Introduction

The evolution towards microservices architectures has unlocked significant benefits in software

development, enabling agility, scalability, and fault tolerance [1]. However, this shift introduces complexities

in managing data consistency and accessibility across independent services, particularly when striving for

domain autonomy within a Domain-Driven Design (DDD) paradigm [2,3]. This paper explores the complex

challenge of maintaining a source of truth or authoritative source and providing efficient data access patterns

in a microservices environment, focusing on a hybrid approach that bridges the gap between real-time

operational data and the principles of Data Mesh architecture [4].

Traditional approaches to data sharing in microservices often rely on real-time API calls over HTTP [5]

which creates tight coupling between services, increasing the risk of cascading failures and hindering

independent deployments or introduces additional complex ecosystems both in synchronous and asynchronous

inter-service communication. Furthermore, solutions like database replication, while effective for disaster

recovery, often fall short in addressing the nuanced needs of inter-domain data integration in a microservices

world. Pursuing a perfect solution (e.g., complete domain isolation) can hinder the delivery of practical value

(e.g., efficient data sharing) [6]. Approaches like SQL Server Always On Availability Groups [8], while robust,

often necessitate replicating entire databases, leading to data redundancy and potential violation of domain

boundaries. This exemplifies O'Reilly's "Residue Theory," where design choices create unintended

consequences [7].

This research embraces a pragmatic approach, acknowledging the complexities inherent in distributed

systems as described by Complexity Science. I propose a hybrid model that leverages log-based Change Data

Capture (CDC) and Event-Driven Architecture (EDA) to achieve a balance between domain autonomy and

inter-service data sharing. By utilizing efficient log-based CDC tools, I aim to minimize the performance

impact on source databases while ensuring selective data propagation. Furthermore, I incorporate CQRS

http://www.ijmra.us/
http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

29 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

(Command Query Responsibility Segregation) to enable command-initiated data replication through events as

asynchronous inter service communication while addressing the dual write or extended transaction conditions

that propagate data changes to other domains in a heterogeneous structure.

This paper delves into the challenges of real-time data synchronization in distributed systems, where

traditional transactional mechanisms are often impractical. I analyze specific data access patterns and inter-

domain communication needs across various industries, highlighting the practicality and effectiveness of this

hybrid methodology. I also discuss the trade-offs involved in different data synchronization strategies and

provide insights into implementation details and optimization techniques.

2. Literature Review

The concept of a single source of truth has long been a cornerstone of data management. However, the rise

of microservices, with its emphasis on domain boundaries and independent services, challenges this traditional

centralized approach. DDD advocates for each domain to manage its own data within a bounded context,

promoting autonomy and flexibility [2,3]. This can lead to data silos and hinder inter-service communication

if not managed effectively.

While synchronous communication via API calls may be suitable for certain scenarios, it introduces

runtime dependencies and tight coupling between services [11]. This can lead to increased latency, reduced

resilience, and scaling dependency. To address some of these challenges, Service Mesh Architecture has been

introduced which introduces further moving parts in an already complex ecosystem.

EDA offers a solution for inter-service communication by enabling asynchronous communication and

loose coupling between services [9]. Changes in one domain are captured as events and propagated to other

interested domains, facilitating data synchronization without tight dependencies. However, implementing EDA

in a complex microservices landscape requires careful consideration of eventual data consistency and event

handling [10]. The search for appropriations in EDA leads to the Event Sourcing pattern amplifying the

complexity of the ecosystem.

The Asynchronous data products in Data Mesh architecture emerges as a compelling paradigm for

addressing these challenges, particularly in analytical contexts . While primarily focused on analytical data,

the principles of Data Mesh can be extended to operational data in a microservices environment, promoting

decentralized data governance and self-serve data infrastructure. It is notable that Data Mesh Architecture itself

has its roots in Microservices Architecture [1] and the same set of evolved technologies can be used in

transactional workloads as well.

CDC has become a crucial technology for data synchronization, enabling the capture and propagation of

changes in a database [13]. Tools like Debezium offer robust CDC capabilities but can introduce performance

overhead on the source database (Confluent, n.d.). This research explores alternative CDC mechanisms, such

as log-based replication offered by platforms like Fivetran, to minimize database load while ensuring efficient

data extraction.

Data Mesh architecture, with its roots in microservices, can be applied to transactional workloads, enabling

real-time data sharing while maintaining loose coupling between services. This approach promotes data quality,

discoverability, and development agility, but requires careful consideration of data consistency and conflict

resolution to ensure data integrity.

This literature review highlights the existing research on managing sources of truth and/or authoritative

sources in distributed systems, focusing on the interplay between DDD, EDA, CDC, and Data Mesh principles.

I identify the gaps in current approaches, particularly the limitations of traditional database replication and the

challenges of excessive data replication, and propose a hybrid methodology that addresses these limitations

while leveraging the strengths of each paradigm.

3. Research Method

3.1 Theoretical Framework: I draw upon the principles of DDD, EDA, Data Mesh, and Complexity Science

to establish a theoretical framework for managing source of truth and reference data in a microservices

environment as an alternative to synchronous inter service communication. We analyze the concepts of domain

boundaries, bounded contexts, event-driven communication, data consistency, and decentralized data

governance to guide our methodology.

3.2 DDD, Domain Autonomy, CQRS and EDA:Domain-Driven Design (DDD) is an architectural approach

that aligns software design with the core business domain. It establishes a shared language between technical

and business stakeholders and divides complex systems into bounded contexts. Each bounded context

represents a subdomain with its own models, terminology, and responsibilities. A key principle of DDD is

domain autonomy, which emphasizes the independence and self-governance of each bounded context. This

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

30 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

means that each context has control over its data, logic, and communication with other contexts. Domain

autonomy reduces dependencies and coupling between contexts, leading to improved agility, scalability, and

maintainability of the overall system. CQRS is a design pattern that complements DDD by separating command

processing (which changes system state) from query processing (which retrieves data). This separation allows

for greater flexibility in optimizing the system for different workloads, such as high write or read volumes.

CQRS can also simplify domain logic and improve system performance and scalability. Event-Driven

Architecture (EDA) is a paradigm that focuses on producing, detecting, consuming, and reacting to events. In

the context of DDD, EDA can be used to enable communication and collaboration between bounded contexts.

By publishing events that signify important changes within a context, EDA allows other contexts to respond

and adapt accordingly. This promotes loose coupling and asynchronous communication, which can enhance

the responsiveness and resilience of the overall system. DDD, Domain Autonomy, CQRS, and EDA are

complementary concepts that can be used to build robust, scalable, and maintainable software systems. By

focusing on the business domain, promoting autonomy, separating concerns, and embracing event-driven

communication, these approaches can help organizations deliver software that meets the changing needs of

their users and stakeholders. A Port and Adapter Architecture also known as Hexagonal Architecture is apt for

this combination. While utilizing modern queuing and data streaming platforms like Kafka when a consumer

scalability is directly tied to number of partitions, the consumer and the Consumer/Async adapter must be

deployed separately from the REST/Sync Adapter.

3.3 Sync Lookup and Service Mesh: While the synchronous data lookup pattern offers benefits within a

microservices architecture, awareness of its potential detriments is important. This methodology introduces

runtime dependencies, potentially causing unanticipated malfunctions. Moreover, it can foster strong inter-

service coupling, thereby complicating independent modification or updating of services. Such close

dependencies may also constrain the system's adaptability and extensibility, as alterations in one component

can produce ripple effects throughout the architectural landscape. A Service Mesh through a sidecar pattern is

one of the ways to address these couplings by offloading the cross cutting concerns to a sidecar in a Kubernetes

environment however it creates additional cost and complexity in ecosystem management.

Figure 1. Synchronous Direct Inter Service Communication and Service Mesh

3.4 Async Data Propagation through Event Driven Architecture: EDA is a software design pattern that

facilitates asynchronous communication between loosely coupled components or services. EDA uses events to

represent important occurrences or changes within a system. Event producers publish these events, which are

then consumed by event subscribers that may trigger additional actions or events. Due to its inherent decoupling

and scalability, EDA is well-suited for asynchronous data propagation. Event producers can publish data

changes as events without needing to know about the specific consumers or their processing requirements. This

allows for flexibility and customization, as event subscribers can independently choose which events to

subscribe to and how to process the data. By leveraging EDA, systems can achieve efficient and scalable

asynchronous data propagation, where data changes are propagated as events in a decoupled and flexible

manner. This approach enables real-time or near-real-time data updates, improves system responsiveness, and

supports distributed and loosely coupled architectures. However in a Microservice environment with strong

ties with Domain Logic, reliably producing Integration events and persisting the domain events (datastore)

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

31 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

gets complicated and introduces challenges with runtime maintenance. Moreover, inter domain requirements

and event carried state transfers makes the governance super complex job, effectively normalizing every event

to a canonical message or rely on database lookups to enrich the domain events. Overall this pattern in itself

makes this a data integration problem rather than an inter-domain communication challenge.

Figure 2: The ideal EDA vs. the reality involving lookups/stream processing.

3.5 Database Replication through Availability Groups: SQL Server Availability Groups (AGs) let you

replicate databases to keep read-only copies updated. They're great for high availability and disaster recovery,

but they might not be the best fit for microservices. Things can get pretty tightly coupled, transactions can be

tricky to keep consistent, scalability can hit some walls, and managing it all gets complicated. These issues can

really mess with keeping domains separate and handling data in a microservices setup.

Figure 3: The Database Replication through Availability Groups.

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

32 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3.6 Hybrid Approach: I propose a hybrid approach that combines log-based CDC with EDA, incorporating

CQRS for command-initiated event origination and data replication. For reference data, we leverage efficient

log-based CDC tools like Fivetran to replicate data from the source-of-record domain to consuming domains.

For broader data synchronization, requiring a high change rate, we employ an event-driven approach using

Kafka as the message broker, produced by commands in the source domain. This approach eradicates the need

for complex event message enrichment with data lookup or stream joins as well. Establishing the Data Access

pattern and the current technical landscape are key drivers of what information will be replicated vs what will

be propagated in real time. Moreover, jump starting any project with a complex architecture as the golden

target architecture always needs a roadmap to evolve the current state to the target state. Even if the target state

architecture is completely event driven or Service Mesh, the hybrid approach will always help in coming up

with the intermediate steps for the roadmap.

Figure 4: The proposed hybrid approach, combining CDC replication and event-driven communication

initiated by domain commands.

3.7 Implementation: I implemented these architectures in multiple project environments with heterogeneous

data structures across various industries. This allowed me to evaluate the performance, scalability, and

consistency guarantees of all these approaches and encouraged me to consider the hybrid approach as the best

suited approach.

3.7.1 Shipping/Logistics:

● Scenario: A shipment tracking service needs to display the current location of a package. This

information is owned by the "Logistics" domain. The "Customer Service" domain also needs access

to this location data to answer customer inquiries.

● Data Access Pattern: The "Customer Service" domain frequently performs read-only lookups of

package location data. This is a high-volume, read-heavy access pattern.

● Inter-Domain Communication: For displaying the location on a tracking website, the "Customer

Service" domain could use CDC to replicate the necessary data from the "Logistics" domain's database

to its own read-optimized database. This allows for fast lookups without burdening the "Logistics"

domain.

● Event-Driven Need: When a package's status changes (e.g., "in transit," "delivered"), the "Logistics"

domain publishes an event to Kafka. Other domains, such as "Billing" (to update delivery status) or

"Customer Facing Tracking" (to adjust shipment status), subscribe to this event and update their own

systems accordingly. This is a true event-driven interaction for broader data synchronization.

● Hybrid Justification: Direct replication for the specific, high-volume lookup use case (package

location) is more efficient than a full event-driven approach for every single lookup. The event-driven

architecture is reserved for broader, less frequent data synchronization related to package status

changes.

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

33 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 5: The proposed hybrid approach implementation in Shipping Induatry

3.7.2. Payment Processing:

● Scenario: A payment gateway must verify the validity of a customer's credit card and initiative

authorization. The card details from “Customer Accounts” are needed in “Fraud Detection” domain

as lookup data. The settled transaction details are needed to be in the "Settlement" and

“Reconciliation” domain. The "Fraud Detection" domain needs access to each transaction data to

assess the risk of a transaction.

● Data Access Pattern: The "Fraud Detection" domain needs to access specific card details (e.g., card

number, expiry date) for each transaction. This is a high-volume, real-time access pattern. It also needs

each transaction details from Payment gateway.

● Inter-Domain Communication: For real-time fraud checks, replicated lookup data is crucial. CDC

could be used to replicate relevant card details to a read-optimized database accessible by the "Fraud

Detection" domain. This minimizes transaction processing latency.

● Event-Driven Need: When a customer's card details are updated (e.g., new address), the "Customer

Accounts" domain publishes an event. The "Fraud Detection" domain, and other relevant domains

like "Billing," subscribe to this event to update their systems. And end of day settled transaction details

can be sent to other domains. Each transaction details must be sent to “Fraud Detection Domain” at

extremely low latency to complete authorization.

● Hybrid Justification: Real-time fraud checks require low-latency access to card details, making

direct replication appropriate. However, broader updates related to customer accounts are handled via

events.

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

34 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 6: The proposed hybrid approach implementation in Payment Processing

3.7.3. Human Capital Management:

● Scenario: An employee “Payroll” system needs “Compensation”, “Benefits” and “Time

Management” info to accurately calculate payroll.

● Data Access Pattern: The "Payroll" domain frequently needs to access employee salary and Benefit

data for every payroll calculation however these are fairly static. The time Management data is

dynamic especially if it needs to work off of timecards.

● Inter-Domain Communication: Fivetran (or similar) can replicate the “Compensation” and

"Benefits" data to Payroll domain.

● Event-Driven Need: When an employee's time card event occurs, the payroll must subscribe to

timecard swipe events to accurately calculate payroll

● Hybrid Justification: Replication is suitable for the frequent but not real-time salary lookups needed

by the “Payroll” system. Events are used for more frequent timecard updates.

Figure 7: The proposed hybrid approach implementation in Human Capital Managment

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

35 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3.7.4. Consumer Banking:

● Scenario: A mobile banking app needs to display the customer's account balance. This data is owned

by the "Core Banking" domain. The "Mobile Banking" domain needs access to this information for

every app refresh.

● Data Access Pattern: The "Mobile Banking" domain performs frequent, real-time lookups of account

balance data.

● Inter-Domain Communication: Replicated read-only copy is essential. Fivetran or similar can

replicate account balance data to the "Mobile Banking" domain's read database.

● Event-Driven Need: When a transaction occurs, the "Core Banking" domain publishes an event.

Other domains, such as "Investment Management" (to update portfolio balances) or "General Ledger"

(to update ledger), subscribe to these events.

● Hybrid Justification: Real-time balance display requires efficient lookup data replication. Broader

transaction updates are handled via events.

Figure 8: The proposed hybrid approach implementation in Banking

3.8 Wardley Mapping: We utilize Wardley Mapping to visualize the component evolution of the integration

framework, analyzing the maturity of different technologies and their strategic implications. This helps us

understand the current landscape and anticipate future trends in data management for microservices.

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

36 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 9: The evolution of technical stack in data sharing and lookup through Wardley Map

4. Results and Analysis

My implementation experience and evaluation of the hybrid approach yielded the following key results:

4.1 Reduced Database Load: Traditional CDC implementations often place a substantial burden on the source

database due to the continuous polling or trigger-based mechanisms they employ to capture changes. This

overhead can lead to performance bottlenecks, especially in systems that handle a large volume of transactions.

Log-based CDC, on the other hand, leverages the database's transaction log, which is a built-in mechanism for

recording all changes made to the data. By reading the transaction log, Log-based CDC can capture changes

with minimal impact on the database's performance.

Furthermore, traditional CDC methods can sometimes introduce database version-specific dependencies,

making it challenging to maintain compatibility across different database versions or migrate to new database

platforms. Log-based CDC, by relying on the standardized transaction log format, often avoids such

dependencies, ensuring greater flexibility and portability. Although each database platform has its own set of

challenges to overcome, Fivetran Data Replication emerges as the winner compared to Debezium based

replication.

4.2 Efficient Lookup Data Access: Replicating reference data across various consuming domains provided a

significant advantage in terms of speed and efficiency for data retrieval. This streamlined process greatly

enhanced the performance of operations that heavily relied on lookups, as the data was readily available within

the domain itself. This eliminated the need for time-consuming cross-domain communication or data fetching,

resulting in faster response times and improved overall system performance. This also gives an interim step to

a target state architecture where event source based events are propagated asynchronously to all consuming

domains.

4.3 Improved Domain Autonomy: In an event-driven architecture, domains are loosely coupled, which means

they can operate and evolve independently without being tightly integrated. This loose coupling is achieved

through the use of events as a communication mechanism. When a significant change occurs within a domain,

it publishes an event. Although the determination of the payload (event notification, event carried state transfer

or Event Sourced) introduces complexity, its value in just communicating the state change of objects in near

real time fashion can not be undervalued. Other domains that have subscribed to that event can then react

accordingly, ensuring that data remains consistent across the system. This approach fosters flexibility and

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

37 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

maintainability, as changes within one domain do not necessitate widespread modifications in other domains.

As long as the published events and their associated data structures remain compatible, the system can adapt

to evolving requirements and technological advancements. AsyncAPI specification provides guidelines on

various payload formats and broker protocol specific message binding that will be used to govern and evolve

Async event contracts.

4.4 Scalability and Fault Tolerance:.The implementation of Kafka as the chosen message broker significantly

enhanced the system's scalability and fault tolerance. This ensured that messages were reliably delivered and

data remained synchronized across all services, even when faced with potential system failures or individual

service outages. Kafka's inherent ability to handle high message volumes and its distributed architecture made

it an ideal choice for managing the complexities of inter-domain communication.

4.5 Effective Data Synchronization with CQRS: In a system designed around the CQRS pattern, efficient

event driven messaging was achieved by initiating the process with commands. These commands, upon

execution, would produce corresponding events to the Kafka topic. These events were then responsible for

propagating the changes made within one domain to other domains as the Kafka Consumer interface would

trigger commands to establish the corresponding state in consuming domains, even when those domains

utilized disparate data structures, ensuring data consistency across the entire system.

4.6 Trade-offs and Complexities: While the hybrid approach offered significant benefits, it also introduced

some complexities in terms of managing different data synchronization mechanisms and ensuring data

consistency across multiple data stores.

The results of this research demonstrate the viability and effectiveness of the hybrid approach for managing

source of truth and refdata in a microservices architecture, incorporating Data Mesh principles and CQRS. By

combining the strengths of log-based CDC, EDA, and domain-oriented data ownership, we achieved a balance

between domain autonomy, data consistency, and performance.

However, the hybrid approach also introduces complexities that must be carefully managed. Ensuring data

consistency across multiple data stores requires robust mechanisms for handling updates and resolving

potential conflicts. Implementing and maintaining different data synchronization mechanisms can also add

complexity to the overall architecture.

This research also highlights the limitations of traditional database replication techniques like SQL Server

Always On Availability Groups, which are primarily designed for disaster recovery and often lead to excessive

data replication. Our hybrid approach overcomes these limitations by enabling selective data propagation and

promoting domain autonomy, as evidenced by the reduced database load and improved performance observed

in our case study implementations.

Furthermore, this research explores the applicability of Data Mesh principles to operational data in a

microservices context. By treating data as a product and promoting domain ownership, we can achieve a more

decentralized and agile approach to data governance. This aligns with the broader trend of democratizing data

access and empowering domains to manage their data independently.

Future research could explore more sophisticated techniques for managing data consistency and

optimizing the performance of the hybrid approach. Further investigation into the trade-offs between different

data synchronization strategies and their applicability to various use cases would also be valuable.

5. Conclusion

Research provides a valuable contribution to the field of microservices architecture, DDD, EDA, and Data

Mesh by offering a pragmatic and nuanced approach to managing source of truth and lookup data for real-time

operational and transactional needs. Our proposed hybrid methodology, combining log-based CDC, event-

driven communication with CQRS, and domain-oriented data ownership, addresses the limitations of existing

solutions while leveraging their strengths.

The findings of this research have significant implications for architects and developers building distributed

systems. By adopting a hybrid approach and carefully considering the trade-offs involved, organizations can

achieve domain autonomy, maintain data consistency, and optimize performance in their microservices

architectures.

This research opens up new avenues for future exploration, including the development of more sophisticated

data consistency mechanisms, the optimization of data synchronization strategies, and the application of this

methodology to a wider range of industries and use cases. As microservices architectures continue to evolve,

the need for effective data management solutions that embrace domain autonomy and real-time data sharing

will only become more critical. This research provides a solid foundation for future innovation in this domain.

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

38 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

References

[1] Pautasso, C., Zimmermann, O., & Amundsen, M. “Microservices in Practice, Part 1: Reality Check and Service

Design”, IEEE Software, 34(1), 91-98. 2017
[2] Evans, E., “Domain-Driven Design: Tackling Complexity in the Heart of Software”, Pearson, 2008
[3] Brandolini, A., “Strategic Domain-Driven Design with Context Mapping”, In Proceedings of the 1st International

Conference on Software Architecture Companion pp. 15-18. IEEE Press. 2019
[4] Bellemare, A., “Building an Event-Driven Data Mesh”, O'Reilly Media. 2023
[5] Maia, T. and Correia, F., “Service Mesh Patterns”, ACM EuroPLop '22: Proceedings of the 27th European

Conference on Pattern Languages of Programs (2), 1-12, 2022
[6] O'Reilly, B., “The Architect’s Paradox”, #45, The complexity Lounge,

https://youtu.be/Qq8x7KIV4W8?si=PRgIF4JezPQUsMbc 2025
[7] O'Reilly, B. “Residuality and Representation: Toward a Coherent Philosophy of Software Architecture”, Science

Direct, Procedia Computer Science, 224, 91-97. 2023
[8] Microsoft, “Always On Availability Groups”, https://learn.microsoft.com/en-us/sql/database-engine/availability-

groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver16 , 2024
[9] Snowden, D. J., & Boone, M. E., “A Leader's Framework for Decision Making”. Harvard Business Review, 85(11),

68-76. 2007
[10] Devopedia, “Inter-Service Communication for Microservices”, https://devopedia.org/inter-service-communication-

for-microservices, 2022.
[11] Richardson, C., “Microservices: Decomposing Applications for Deployability and Scalability”, In Proceedings of

the 38th International Conference on Software Engineering Companion (pp. 243-252). IEEE Press, 2017.
[12] Kleppmann, M., “Designing Data-Intensive Applications”, O'Reilly Media. 2017
[13] Pathirana, S., & Perera, A., “A Survey of Change Data Capture Technology for Efficient Data Replication”, Journal

of Information Technology Review, 7(1), 1-18. 2015
[14] Wardley, S., “Wardley Mapping”. https://learnwardleymapping.com/ 2014
[15] Confluent, “Sync Databases and Remove Silos with Kafka CDC”, https://www.confluent.io/blog/sync-databases-

and-remove-silos-with-kafka-cdc/
[16] Vettor, Robert & Smith, Steve, “Cloud-Native .NET apps for Azure v1.0”, https://dotnet.microsoft.com/download/e-

book/cloud-native-azure/pdf

http://www.ijmra.us/
https://youtu.be/Qq8x7KIV4W8?si=PRgIF4JezPQUsMbc
https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver16
https://devopedia.org/inter-service-communication-for-microservices
https://devopedia.org/inter-service-communication-for-microservices
https://learnwardleymapping.com/
https://www.confluent.io/blog/sync-databases-and-remove-silos-with-kafka-cdc/
https://www.confluent.io/blog/sync-databases-and-remove-silos-with-kafka-cdc/

